C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Differential and Integral Calculus

Subject Code: 4SC04DIC1		Branch: B.Sc. (Physics)	
Semester: 4	Date: 26/04/2018	Time: 10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)Evaluate: $\int_{1}^{2} \int_{0}^{1} xy \, dx \, dy$ Evaluate: $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} dx \, dy \, dz.$ a) (02)b) (02)A particle moves along the $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. **c**) (02)Find the component of its velocity at time t = 1. Prove that $curl(grad \phi) = \overline{0}$ where ϕ is scaler valued function. **d**) (02)When a vector function \overline{F} is irrotational? e) (01)f) State Green's Theorem. (01)State Stoke's Theorem. (01)**g**) Write a formula of curvature in polar form. **h**) (01)**i**) Define: Node. (01)What are the conditions to check the curve f(x, y) = 0 having a double point as **j**) (01)cusp? Attempt any four questions from Q-2 to Q-8 Q-2 Attempt all questions (14)Find the directional derivatives of $\phi = 2xy^2 + yz^2$ at the point (2, -1,1) in the (05)a) direction of the vector i + 2j + 2k. Find divergence and curl of $\overline{v} = (xyz)i + (3x^2y)j + (xz^2 - y^2z)k$ at (2, -1, 1). (05)b) Find value of m if $\overline{F} = (x + 2y)i + (my + 4z)j + (5z + 6x)k$ is solenoidal. (04)**c**) Q-3 **Attempt all questions** (14)Evaluate $\int_c \vec{F} d\vec{r}$ where $\vec{F} = (x^2 + y^2)i - 2xy j$ and *c* is rectangle in the xy - 2xy j(07)a) plane bounded by y = 0, x = a, y = b, x = 0. Find work done in moving a particle from A(1,0,1) to B(2,1,2) along the straight (07)b) line AB in the force field $\overline{F} = x^2 i + (x - y)i + (y + z)k$. Attempt all questions (14)Q-4 Using polar coordinates, find $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ a) (05)b) Evaluate: $\int_{1}^{3} \int_{\frac{1}{x}}^{1} \int_{0}^{\sqrt{xy}} xyz \ dx \ dy \ dz.$ (05)

	c)	Evaluate: $\iint_{P} x \sqrt{1-x^2} dx dy$, where $R: 0 \le x \le 1, 2 \le y \le 3$.	(04)
Q-5		Attempt all questions	(14)
-	a)	Evaluate $\iint_R y dx dy$ where R is region bounded by the parabolas $y^2 = 4x$ and	(05)
		$x^2 = 4y$.	
	b)	Evaluate $\iint_R \sqrt{x+y} dx dy$, where R is the parallelogram bounded by the lines	(05)
		x + y = 0, x + y = 1, 2x - 3y = 0, 2x - 3y = 4.	
	c)	Change the order of integration $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$.	(04)
Q-6		Attempt all questions	(14)
	a)	Verify Green's theorem for $\int_{c} [(x - y)dx + 3xydy]$, where c is the boundary of	(09)
		the region bounded by the parabolas $x^2 = 4y$ and $y^2 = 4x$.	
	b)	Using Stoke's theorem for the vector field $\overline{F} = (x + y)i + (y + z)j - xk$ and S	(05)
		is the surface of the plane $2x + y + z = 2$ which is in the first octant.	
Q-7		Attempt all questions	(14)
	a)	Solve: $p \tan x + q \tan y = \tan z$.	(05)
	b)	Solve: $(mz - ny)p + (nx - lz)q = ly - mx$.	(05)
	c)	Form a partial differential equation by eliminating arbitrary constants from the	(04)
		equation $z = a(x + y) + b$ where a, b are constants.	
Q-8		Attempt all questions	(14)
	a)	$(1+\alpha^2)^{\frac{3}{2}}$	(05)
		Prove that radius of curvature for the curve $y = f(x)$ is $\frac{(1+y_1)^2}{y_2}$.	
	b)	Find radius of curvature for the curve $r = a(1 - \cos\theta)$.	(05)
	c)	Find the double points of the curve $x^3 + y^3 - 12x - 27y + 70 = 0$	(04)

